Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Özkan Kızılırmak, Gül"'
Publikováno v:
ITM Web of Conferences, Vol 49, p 01003 (2022)
In this paper, we obtain some upper and lower bounds for the spectral radius of some special matrices such as maximum degree, minimum degree, Randic, sum-connectivity, degree sum, degree square sum, first Zagreb and second Zagreb matrices of a simple
Externí odkaz:
https://doaj.org/article/cd7121f6ed98491090f1a309b6184f91
In this paper, we first get the degree of each point in Lucas-sum graph based on Lucas numbers. After that, we obtain lower and upper bounds for the largest eigenvalues λ and µ of the adjacency matrices of Fibonacci-sum and Lucas-sum graphs, respec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::fe90b29018c551bc1cd76af8c040f188
https://avesis.gazi.edu.tr/publication/details/c4f1a8dc-67d2-4e7c-99fc-011d68517b79/oai
https://avesis.gazi.edu.tr/publication/details/c4f1a8dc-67d2-4e7c-99fc-011d68517b79/oai
Bu çalışmada basit bağlantılı bir G grafının derecelerinin GCD’lerinden yararlanarak GCD matrisi tanımlanmıştır. Daha sonra bu matrisin özelliklerinden yararlanarak GCD enerjisi için bazı sınırlar elde edilmiştir. Ayrıca, bazı
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0015d23eb9f1d82a9d80e29a9ed8c34a
Publikováno v:
Volume: 2, Issue: 2 14-18
Gazi Üniversitesi Fen Fakültesi Dergisi
Gazi Üniversitesi Fen Fakültesi Dergisi
Bu çalışmada basit bağlantılı bir G grafının derecelerinin GCD’lerinden yararlanarak GCD matrisi tanımlanmıştır. Daha sonra bu matrisin özelliklerinden yararlanarak GCD enerjisi için bazı sınırlar elde edilmiştir. Ayrıca, bazı
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9b32739de3024bc08dc4401285d16c6
https://avesis.gazi.edu.tr/publication/details/f72723a8-9277-4716-b62c-02ce0a9845d0/oai
https://avesis.gazi.edu.tr/publication/details/f72723a8-9277-4716-b62c-02ce0a9845d0/oai
Autor:
Özkan Kızılırmak, Gül, Taşcı, Dursun
In this study, we first obtain infinite sums derived from the reciprocal of the Gaussian Lucas sequence using the Binet formula and some properties. Then, we express the infinite sums of these reciprocals in terms of the Lambert series.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_____10046::bc8adc19876dec6a55fa314f7c6d00a0
https://avesis.gazi.edu.tr/publication/details/db65078e-a5ed-45c0-9192-a26d89fcf92a/oai
https://avesis.gazi.edu.tr/publication/details/db65078e-a5ed-45c0-9192-a26d89fcf92a/oai