Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Özer, Çelik"'
Publikováno v:
BMC Medical Imaging, Vol 24, Iss 1, Pp 1-14 (2024)
Abstract Background We explored whether the feature aggregation and refinement network (FARNet) algorithm accurately identified posteroanterior (PA) cephalometric landmarks. Methods We identified 47 landmarks on 1,431 PA cephalograms of which 1,177 w
Externí odkaz:
https://doaj.org/article/88fcb5f88fb0469da3cc7d383c783dd7
Autor:
Oğuzhan Altun, Duygu Çelik Özen, Şuayip Burak Duman, Numan Dedeoğlu, İbrahim Şevki Bayrakdar, Gözde Eşer, Özer Çelik, Muhammed Akif Sümbüllü, Ali Zakir Syed
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-15 (2024)
Abstract Background Maxillofacial complex automated segmentation could alternative traditional segmentation methods to increase the effectiveness of virtual workloads. The use of DL systems in the detection of maxillary sinus and pathologies will bot
Externí odkaz:
https://doaj.org/article/63d90640b3f648b4acd19e07a7a1f500
Autor:
Ayça Kurt, Dilara Nil Günaçar, Fatma Yanık Şılbır, Zeynep Yeşil, İbrahim Şevki Bayrakdar, Özer Çelik, Elif Bilgir, Kaan Orhan
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-14 (2024)
Abstract Background This study aims to evaluate the performance of a deep learning system for the evaluation of tooth development stages on images obtained from panoramic radiographs from child patients. Methods The study collected a total of 1500 im
Externí odkaz:
https://doaj.org/article/1848ea4494f24be89e4055ea55193318
Publikováno v:
BMC Pregnancy and Childbirth, Vol 24, Iss 1, Pp 1-8 (2024)
Abstract Background We aimed to determine the best-performing machine learning (ML)-based algorithm for predicting gestational diabetes mellitus (GDM) with sociodemographic and obstetrics features in the pre-conceptional period. Methods We collected
Externí odkaz:
https://doaj.org/article/be3c7c75032b4930b9b97d5dc2a39b31
Publikováno v:
Reproductive Biology and Endocrinology, Vol 22, Iss 1, Pp 1-6 (2024)
Abstract Purpose To find the machine learning (ML) method that has the highest accuracy in predicting the semen quality of men based on basic questionnaire data about lifestyle behavior. Methods The medical records of men whose semen was analyzed for
Externí odkaz:
https://doaj.org/article/6d1ca63ccd954932a5a80c2457bea0f5
Autor:
Busra Beser, Tugba Reis, Merve Nur Berber, Edanur Topaloglu, Esra Gungor, Münevver Coruh Kılıc, Sacide Duman, Özer Çelik, Alican Kuran, Ibrahim Sevki Bayrakdar
Publikováno v:
BMC Medical Imaging, Vol 24, Iss 1, Pp 1-14 (2024)
Abstract Objectives In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentat
Externí odkaz:
https://doaj.org/article/1dfb768d52924928ae40ea86d4878a4e
Autor:
Nilgün AKGÜL, Cemile YILMAZ, Elif BILGIR, Özer ÇELIK, Oğuzhan BAYDAR, İbrahim Şevki BAYRAKDAR
Publikováno v:
Brazilian Oral Research, Vol 38 (2024)
Abstract Dental fillings, frequently used in dentistry to address various dental tissue issues, may pose problems when not aligned with the anatomical contours and physiology of dental and periodontal tissues. Our study aims to detect the prevalence
Externí odkaz:
https://doaj.org/article/03fe41850df84b99b476661e43a65af7
Autor:
Pelin Senem Ozsunkar, Duygu Çelİk Özen, Ahmed Z Abdelkarim, Sacide Duman, Mehmet Uğurlu, Mehmet Rıdvan Demİr, Batuhan Kuleli, Özer Çelİk, Busra Seda Imamoglu, Ibrahim Sevki Bayrakdar, Suayip Burak Duman
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-11 (2024)
Abstract Background Deep learning model trained on a large image dataset, can be used to detect and discriminate targets with similar but not identical appearances. The aim of this study is to evaluate the post-training performance of the CNN-based Y
Externí odkaz:
https://doaj.org/article/d81690ea29474ab9a5a5c20b9e4cbb55
Autor:
Sevda Kurt-Bayrakdar, İbrahim Şevki Bayrakdar, Muhammet Burak Yavuz, Nichal Sali, Özer Çelik, Oğuz Köse, Bilge Cansu Uzun Saylan, Batuhan Kuleli, Rohan Jagtap, Kaan Orhan
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-15 (2024)
Abstract Background This retrospective study aimed to develop a deep learning algorithm for the interpretation of panoramic radiographs and to examine the performance of this algorithm in the detection of periodontal bone losses and bone loss pattern
Externí odkaz:
https://doaj.org/article/d2ab7881ae44451cad7cf9ff73860477
Autor:
Busra Beser, Tugba Reis, Merve Nur Berber, Edanur Topaloglu, Esra Gungor, Münevver Coruh Kılıc, Sacide Duman, Özer Çelik, Alican Kuran, Ibrahim Sevki Bayrakdar
Publikováno v:
BMC Medical Imaging, Vol 24, Iss 1, Pp 1-1 (2024)
Externí odkaz:
https://doaj.org/article/5758cdfd31eb4c53b9afe85d0e0d1154