Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Érica Z. Fornaroli"'
Autor:
Érica Z. Fornaroli
Publikováno v:
Algebra Colloquium. 29:419-426
Let [Formula: see text] be a finite partially ordered set, [Formula: see text] an associative unital ring and [Formula: see text] an endomorphism of [Formula: see text]. We describe some properties of the skew incidence ring [Formula: see text] such
Autor:
Érica Z. Fornaroli, Roger E.M. Pezzott
Publikováno v:
Linear Algebra and its Applications. 637:82-109
Publikováno v:
Glasgow Mathematical Journal. 64:702-715
Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving certain equivale
Publikováno v:
Communications in Algebra. 49:1816-1828
In this paper, we present necessary and sufficient conditions for an additive derivation of an incidence algebra of a connected finite partially ordered set X to be inner. These conditions are rela...
Publikováno v:
Colloquium Mathematicum. 159:285-307
Let $\mathcal{C}$ be a pocategory, $FI(\mathcal{C})$ the finitary incidence ring of $\mathcal{C}$ and $\varphi$ a Jordan isomorphism of $FI(\mathcal{C})$ onto an associative ring $A$. We study the problem of decomposition of $\varphi$ into the (near-
We fully characterize regular Hom-Lie structures on the incidence algebra $I(X,K)$ of a finite connected poset $X$ over a field $K$. We prove that such a structure is the sum of a central-valued linear map annihilating the Jacobson radical of $I(X,K)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1ce121922eb21f2da4effe7a001c4f4
Publikováno v:
Journal of Pure and Applied Algebra. 223:769-782
In this paper we generalize the concepts of good and elementary gradings for an associative algebra A with a fixed multiplicative basis B. When the group G considered in the grading is abelian, we equip the set of good G-gradings of A with a structur
Autor:
Érica Z. Fornaroli
Publikováno v:
Journal of Algebra and Its Applications. 20:2150034
Let [Formula: see text] be a finite partially ordered set, [Formula: see text] a commutative domain and [Formula: see text] an endomorphism of [Formula: see text]. We define the skew incidence ring [Formula: see text] and we prove that each Jordan is
Let $X$ be a partially ordered set, $R$ a commutative $2$-torsionfree unital ring and $FI(X,R)$ the finitary incidence algebra of $X$ over $R$. In this note we prove that each $R$-linear Jordan isomorphism of $FI(X,R)$ onto an $R$-algebra $A$ is the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08de590df9f16975c8e200e641ccb0f4
http://arxiv.org/abs/1701.08859
http://arxiv.org/abs/1701.08859
Publikováno v:
International Journal of Algebra and Computation. 24:1085-1098
Let X be a connected partially ordered set and let K be a field of characteristic different from 2. We present necessary and sufficient conditions for two involutions on the finitary incidence algebra of X over K, FI (X), to be equivalent in the case