Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Árpád Hegedűs"'
Publikováno v:
Journal of High Energy Physics, Vol 2024, Iss 5, Pp 1-69 (2024)
Abstract Integrability methods give us access to a number of observables in the planar N $$ \mathcal{N} $$ = 4 SYM. Among them, the Quantum Spectral Curve (QSC) governs the spectrum of anomalous dimensions. Low lying states were successfully studied
Externí odkaz:
https://doaj.org/article/c7deb901851842beb1fdf12da9d60374
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 9, Pp 1-54 (2022)
Abstract We reconsider the complete solution of the linear TBA equation describing the energy density of finite density states in the O(N) nonlinear sigma models by the Wiener-Hopf method. We keep all perturbative and non-perturbative contributions a
Externí odkaz:
https://doaj.org/article/15c01e88a5dc49a397ae62545b3de71d
Autor:
Árpád Hegedűs
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 7, Pp 1-34 (2021)
Abstract In this paper we derive from field theory a Lüscher-formula, which gives the leading exponentially small in volume corrections to the 1-particle form-factors in non-diagonally scattering integrable quantum field theories. Our final formula
Externí odkaz:
https://doaj.org/article/4084e077dd89417e87950e059d6c18f9
Publikováno v:
Physics Letters B, Vol 829, Iss , Pp 137073- (2022)
We investigate the ground-state energy of the integrable two dimensional O(3) sigma model in a magnetic field. By determining a large number of perturbative coefficients we explore the closest singularities of the corresponding Borel function. We the
Externí odkaz:
https://doaj.org/article/9c93e44ec80348388e2893f156431843
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 5, Pp 1-38 (2021)
Abstract We analyze the free energy of the integrable two dimensional O(4) sigma model in a magnetic field. We use Volin’s method to extract high number (2000) of perturbative coefficients with very high precision. The factorial growth of these coe
Externí odkaz:
https://doaj.org/article/f29de35525cd4de0a502d15e45c8c81e
Autor:
Árpád Hegedűs
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 1, Pp 1-38 (2020)
Abstract Using the fermionic basis discovered in the 6-vertex model, we derive exact formulas for the expectation values of local operators of the sine-Gordon theory in any eigenstate of the Hamiltonian. We tested our formulas in the pure multi-solit
Externí odkaz:
https://doaj.org/article/f7a3e54781c94442a359d49395bb98cd
Publikováno v:
Physics Letters B, Vol 818, Iss , Pp 136369- (2021)
We study the resurgent trans-series for the free energy of the two-dimensional O(4) sigma model in a magnetic field. Exploiting integrability, we obtain very high-order perturbative data, from which we can explore non-perturbative sectors. We are abl
Externí odkaz:
https://doaj.org/article/18aba42c3cd941babcd1945f872736d4
Autor:
Árpád Hegedűs
Publikováno v:
Nuclear Physics B, Vol 933, Iss , Pp 349-383 (2018)
The 6-vertex model with appropriately chosen alternating inhomogeneities gives the so-called light-cone lattice regularization of the sine-Gordon (Massive-Thirring) model. In this integrable lattice model we consider pure hole states above the antife
Externí odkaz:
https://doaj.org/article/13a6daebd9be4c4c978fe10fc0993e93
Autor:
Árpád Hegedűs
Publikováno v:
Journal of High Energy Physics, Vol 2018, Iss 3, Pp 1-53 (2018)
Abstract In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator Ψ ¯ Ψ $$ \overline{\varPsi}\varPsi $$ between pure fermion states in the Massive Thirring Model. In the
Externí odkaz:
https://doaj.org/article/5f345941daa240238d44c7f913f8a7be
Autor:
Árpád Hegedűs
Publikováno v:
Journal of High Energy Physics, Vol 2017, Iss 8, Pp 1-31 (2017)
Abstract In this paper we demonstrate, that the light-cone lattice approach for the Massive-Thirring (sine-Gordon) model, through the quantum inverse scattering method, admits an appropriate framework for computing the finite volume form-factors of l
Externí odkaz:
https://doaj.org/article/ccb0b78097c444cca724f4573fc497f5