Zobrazeno 1 - 10
of 535
pro vyhledávání: '"Á Rúzsa"'
Autor:
Matolcsi, Mate, Ruzsa, Imre Z.
Publikováno v:
Proceedings of the Steklov Institute of Mathematics 314 : 1 pp. 138-143, 6 p. (2021)
By constructing suitable nonnegative exponential sums we give upper bounds on the cardinality of any set $B_q$ in cyclic groups $\ZZ_q$ such that the difference set $B_q-B_q$ avoids cubic residues modulo $q$.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/2406.00406
Autor:
Ruzsa, Imre Z.
We present examples of multiplicative semigroups of positive reals (Beurling's generalized integers) with gaps bounded from below.
Comment: 10 pages. To be published in Mathematica Pannonica
Comment: 10 pages. To be published in Mathematica Pannonica
Externí odkaz:
http://arxiv.org/abs/2311.11127
We prove that the fractional chromatic number $\chi_f(\mathbb{R}^2)$ of the unit distance graph of the Euclidean plane is greater than or equal to $4$. A fundamental ingredient of the proof is the notion of geometric fractional chromatic number $\chi
Externí odkaz:
http://arxiv.org/abs/2311.10069
Autor:
Ruzsa, Imre Z.
Under the prime-tuple hypothesis, the set of signed primes is a sumset.
Comment: 5 pages, submitted to Acta Arithmetica
Comment: 5 pages, submitted to Acta Arithmetica
Externí odkaz:
http://arxiv.org/abs/2204.14013
Autor:
Singh, Manasvi, Kumar, Ashish, Khanna, Narendra N., Laird, John R., Nicolaides, Andrew, Faa, Gavino, Johri, Amer M., Mantella, Laura E., Fernandes, Jose Fernandes E., Teji, Jagjit S., Singh, Narpinder, Fouda, Mostafa M., Singh, Rajesh, Sharma, Aditya, Kitas, George, Rathore, Vijay, Singh, Inder M., Tadepalli, Kalyan, Al-Maini, Mustafa, Isenovic, Esma R., Chaturvedi, Seemant, Garg, Deepak, Paraskevas, Kosmas I., Mikhailidis, Dimitri P., Viswanathan, Vijay, Kalra, Manudeep K., Ruzsa, Zoltan, Saba, Luca, Laine, Andrew F., Bhatt, Deepak L., Suri, Jasjit S.
Publikováno v:
In eClinicalMedicine July 2024 73
Autor:
Hemetsberger, Rayyan, Mankerious, Nader, Muntané-Carol, Guillem, Temporal, Justin, Sulimov, Dmitriy, Gaede, Luise, Woitek, Felix, Grau, Edgar Fadeuilhe, Scalamogna, Maria, Olschewski, Maximilian, Mitsis, Andreas, Ruzsa, Zoltán, Toth, Gabor G., Heyer, Hajo, Toelg, Ralph, Gómez-Hospital, Joan A., Mügge, Andreas, Hengstenberg, Christian, Mangner, Norman, Gori, Tommaso, Cassese, Salvatore, Suárez, Xavier Carrillo, Abdel-Wahab, Mohamed, Johnson, Thomas, Richardt, Gert, Allali, Abdelhakim
Publikováno v:
In Canadian Journal of Cardiology July 2024 40(7):1226-1233
Autor:
Ruzsa, Imre, Solymosi, Jozsef
We investigate additive properties of sets $A,$ where $A=\{a_1,a_2,\ldots ,a_k\}$ is a monotone increasing set of real numbers, and the differences of consecutive elements are all distinct. It is known that $|A+B|\geq c|A||B|^{1/2}$ for any finite se
Externí odkaz:
http://arxiv.org/abs/2008.08021
This note is a continuation of an earlier paper by the authors. We describe improved constructions addressing a question of Erd\H{o}s and Szemer\'edi on sums and products of real numbers along the edges of a graph. We also add a few observations abou
Externí odkaz:
http://arxiv.org/abs/2007.12970
We give a short, self-contained proof of two key results from a paper of four of the authors. The first is a kind of weighted discrete Pr\'ekopa-Leindler inequality. This is then applied to show that if $A, B \subseteq \mathbb{Z}^d$ are finite sets a
Externí odkaz:
http://arxiv.org/abs/2003.04077
Let $d$ be a positive integer and $U \subset \mathbb{Z}^d$ finite. We study $$\beta(U) : = \inf_{\substack{A , B \neq \emptyset \\ \text{finite}}} \frac{|A+B+U|}{|A|^{1/2}{|B|^{1/2}}},$$ and other related quantities. We employ tensorization, which is
Externí odkaz:
http://arxiv.org/abs/2003.04075