Zobrazeno 1 - 7
of 7
pro vyhledávání: '"\(p(\cdot)\)-laplacian"'
Autor:
Mustafa Avci
Publikováno v:
Communications in Analysis and Mechanics, Vol 16, Iss 3, Pp 554-577 (2024)
In the present paper, we study an anisotropic $ \overset{\rightarrow }{p}(\cdot) $-Laplace equation with combined effects of variable singular and sublinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization, we
Externí odkaz:
https://doaj.org/article/7fc1671c54ec44979affdc0e4e71a091
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-21 (2024)
Abstract In this paper, we study fractional p 1 ( x , ⋅ ) & p 2 ( x , ⋅ ) $p_{1}(x,\cdot )\& p_{2}(x,\cdot )$ -Laplacian Schrödinger-type equations for Robin boundary conditions. Under some suitable assumptions, we show that two solutions exist
Externí odkaz:
https://doaj.org/article/913b22beae2a400fa2ff28fd393c34bf
Autor:
Junichi Aramaki
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 12, Pp 1-22 (2023)
In In this paper, we consider a mixed boundary value problem for nonuniformly elliptic equation in a variable exponent Sobolev space containing $p(\cdot)$-Laplacian and mean curvature operator. More precisely, we are concerned with the problem with t
Externí odkaz:
https://doaj.org/article/16f5303efccd4c528172cf0c938ba1e4
Autor:
Robert Stegliński
Publikováno v:
Opuscula Mathematica, Vol 42, Iss 5, Pp 751-761 (2022)
Using the Dual Fountain Theorem we obtain some existence of infinitely many solutions for local and nonlocal elliptic equations with variable exponent. Our results correct some of the errors that have appeared recently in the literature.
Externí odkaz:
https://doaj.org/article/80508850e192468d95a8ad5b0733239e
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-20 (2022)
Abstract We present the theory of a new fractional Sobolev space in complete manifolds with variable exponent. As a result, we investigate some of our new space’s qualitative properties, such as completeness, reflexivity, separability, and density.
Externí odkaz:
https://doaj.org/article/de05219482c8479dbb43fb2adb4f513e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Călin Şerban
Publikováno v:
Taiwanese J. Math. 17, no. 4 (2013), 1425-1439
Using critical point theory, we study the multiplicity of solutions for some periodic and Neumann boundary value problems involving the discrete $p(\cdot)$-Laplacian.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37558fc754430ff1d117c0cebc6e0286
http://projecteuclid.org/euclid.twjm/1499706125
http://projecteuclid.org/euclid.twjm/1499706125