Zobrazeno 1 - 10
of 468
pro vyhledávání: '"[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]"'
Autor:
PARADAN Paul-Emile
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. :1-27
In this paper, we prove some convexity results associated to orbit projection of noncompact real reductive Lie groups.
Publikováno v:
Mathematische Zeitschrift. 301:2339-2367
In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We introduce a new method to compare the Bergman kerne
We introduce and study the barcode entropy for geodesic flows of closed Riemannian manifolds, which measures the exponential growth rate of the number of not-too-short bars in the Morse-theoretic barcode of the energy functional. We prove that the ba
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::205616214abcfc6fe20b396ee40af178
https://hal-ens-lyon.archives-ouvertes.fr/ensl-03895619
https://hal-ens-lyon.archives-ouvertes.fr/ensl-03895619
Publikováno v:
Annales Henri Lebesgue. 4:1103-1141
This work is at the intersection of dynamical systems and contact geometry, and it focuses on the effects of a contact surgery adapted to the study of Reeb fields and on the effects of invariance of contact homology. We show that this contact surgery
Autor:
Cardona, Robert, Oms, Cédric
Let $f$ be a Morse function on a closed surface $\Sigma$ such that zero is a regular value and such that $f$ admits neither positive minima nor negative maxima. In this expository note, we show that $\Sigma\times \mathbb{R}$ admits an $\mathbb{R}$-in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c62e9643316d677df375ac7ae825b7b5
https://hal.science/hal-03738409/document
https://hal.science/hal-03738409/document
Autor:
Cardona, Robert, Oms, Cédric
A b-contact structure on a b-manifold (M, Z) is a singular Jacobi structure on M satisfying a transversality condition along the hypersurface Z. We show that, in three dimensions, b-contact structures with overtwisted three-dimensional leaves satisfy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3393::7ec1f70c9378e437f0623bea79d07776
https://hal.science/hal-03738405
https://hal.science/hal-03738405
Autor:
Cosserat, Oscar
Publikováno v:
Journal of Geometry and Physics. 186:104751
We use local symplectic Lie groupoids to construct Poisson integrators for generic Poisson structures. More precisely, recursively obtained solutions of a Hamilton-Jacobi-like equation are interpreted as Lagrangian bisections in a neighborhood of the
Autor:
Paul-Emile Paradan
Publikováno v:
Journal of Symplectic Geometry
Journal of Symplectic Geometry, International Press, In press
Journal of Symplectic Geometry, International Press, 2019, 17 (5), pp.1389-1426. ⟨10.4310/JSG.2019.v17.n5.a5⟩
Journal of Symplectic Geometry, International Press, In press
Journal of Symplectic Geometry, International Press, 2019, 17 (5), pp.1389-1426. ⟨10.4310/JSG.2019.v17.n5.a5⟩
International audience; This paper is dedicated to the study of the stability of multiplicities of group representations.
Autor:
Floch, Yohann Le, Palmer, Joseph
Publikováno v:
Memoirs of the American Mathematical Society
Memoirs of the American Mathematical Society, American Mathematical Society, In press
Memoirs of the American Mathematical Society, American Mathematical Society, In press
Semitoric systems are a type of four-dimensional integrable system for which one of the integrals generates a global $S^1$-action; these systems were classified by Pelayo and Vu Ngoc in terms of five symplectic invariants. We introduce and study semi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::640b2c69b68710337e84608f78c1e364
https://hal.archives-ouvertes.fr/hal-01895250v2/document
https://hal.archives-ouvertes.fr/hal-01895250v2/document