Zobrazeno 1 - 10
of 3 707
pro vyhledávání: '"[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]"'
Publikováno v:
Mathematics
Mathematics, 2023, 11 (12), pp.27774. ⟨10.3390/math11122774⟩
Mathematics, 2023, 11 (12), pp.27774. ⟨10.3390/math11122774⟩
Linear codes with complementary duals, or LCD codes, have recently been applied to side-channel and fault injection attack-resistant cryptographic countermeasures. We explain that over characteristic two fields, they exist whenever the permanent of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3430::53501eb9f773eb8e7b93694ac632c42b
https://hal.science/hal-04136827/document
https://hal.science/hal-04136827/document
Autor:
Manfred G. Madritsch, Verónica Becher
Publikováno v:
Acta Arithmetica. 203:271-288
In 2008 or earlier, Michel Mend\`es France asked for an instance of a real number $x$ such that both $x$ and $1/x$ are simply normal to a given integer base $b$. We give a positive answer to this question by constructing a number $x$ such that both $
Autor:
Harpaz, Yonatan, Wittenberg, Olivier
Publikováno v:
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, In press
Duke Mathematical Journal, Duke University Press, In press
A conjecture of Min\'a\v{c} and T\^an predicts that for any n>2, any prime p and any field k, the Massey product of n Galois cohomology classes in H^1(k,Z/pZ) must vanish if it is defined. We establish this conjecture when k is a number field.
C
C
Publikováno v:
Publicacions Matemàtiques
Publicacions Matemàtiques, In press
Publicacions Matemàtiques, In press
We provide several extensions of the modular method which were motivated by the problem of completing previous work to prove that, for any integer $n \geq 2$, the equation \[ x^{13} + y^{13} = 3 z^n \] has no non-trivial solutions. In particular, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be6497a274e66e335cfab28b0d01304f
https://ddd.uab.cat/record/280952
https://ddd.uab.cat/record/280952
We study how often exceptional configurations of irreducible polynomials over finite fields occur in the context of prime number races and Chebyshev's bias. In particular, we show that three types of biases, which we call "complete bias", "lower orde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fc9a65cac516b58dc9041a0e73cda38
https://hal.science/hal-04008924
https://hal.science/hal-04008924
Publikováno v:
Research in Number Theory
Research in Number Theory, 2023, 9 (2), pp.article n°21. ⟨10.1007/s40993-022-00409-7⟩
Research in Number Theory, 2023, 9 (2), pp.article n°21. ⟨10.1007/s40993-022-00409-7⟩
In this paper we prove that there are finitely many modular curves that admit a smooth plane model. Moreover, if the degree of the model is greater than or equal to 19, no such curve exists. For modular curves of Shimura type we show that none can ad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cc1b078d6b4c720582c89dc010e0720
https://hal.science/hal-03609786
https://hal.science/hal-03609786
Autor:
Kieffer, Jean
Publikováno v:
Publications Mathématiques de Besançon : Algèbre et Théorie des Nombres
Publications Mathématiques de Besançon : Algèbre et Théorie des Nombres, 2022, pp.37-58. ⟨10.5802/pmb.45⟩
Publications Mathématiques de Besançon : Algèbre et Théorie des Nombres, 2022, pp.37-58. ⟨10.5802/pmb.45⟩
International audience; Existing algorithms to compute genus 2 theta constants in quasi-linear time use Borchardt sequences, an analogue of the arithmetic-geometric mean for four complex numbers. In this paper, we show that these Borchardt sequences
Autor:
Georges Gras
Publikováno v:
International Journal of Number Theory. 18:2241-2263
Let k be a number field, p$\ge$2 a prime and S a set of tame or wild finite places of k. We call K/k a totally S-ramified cyclic p-tower if Gal(K/k)=Z/p^NZ and if S non-empty is totally ramified. Using analogues of Chevalley's formula (Gras, Proc. Ma
Autor:
Campagna, Francesco, Pengo, Riccardo
Publikováno v:
Pacific Journal of Mathematics
Pacific Journal of Mathematics, Mathematical Sciences Publishers, In press
Pacific Journal of Mathematics, In press
Pacific Journal of Mathematics, Mathematical Sciences Publishers, In press
Pacific Journal of Mathematics, In press
For every elliptic curve $E$ which has complex multiplication (CM) and is defined over a number field $F$ containing the CM field $K$, we prove that the family of $p^{\infty}$-division fields of $E$, with $p \in \mathbb{N}$ prime, becomes linearly di