Zobrazeno 1 - 10
of 1 541
pro vyhledávání: '"[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]"'
Autor:
Sikorav, Jean-Claude
Publikováno v:
Annales de l'Institut Fourier. 73:279-306
We prove that for "most" closed 3-dimensional manifolds $M$, the existence of a closed non singular one-form in a given cohomology class $u\in H^1 (M,\bf R)$ is equivalent to the fact that every twisted Alexander polynomial $\Delta^H(M,u) \in {\bf Z}
Autor:
Faes, Quentin
Publikováno v:
Algebraic & Geometric Topology. 23:243-293
Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like o
Autor:
Nicolás, Francisco, Py, Pierre
Publikováno v:
Annales de la Faculté des Sciences de Toulouse. Mathématiques.
Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc In press
Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc In press
We study irrational pencils with isolated critical points on compact aspherical complex manifolds. We prove that if the set of critical points is nonempty, the homology of the kernel of the morphism induced by the pencil on fundamental groups is not
Autor:
Hsien-Chih Chang, Arnaud de Mesmay
Publikováno v:
SODA
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, Jan 2020, Salt Lake City, United States. pp.747-766, ⟨10.1137/1.9781611975994.46⟩
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, Jan 2020, Salt Lake City, United States. pp.747-766, ⟨10.1137/1.9781611975994.46⟩
We prove the first polynomial bound on the number of monotonic homotopy moves required to tighten a collection of closed curves on any compact orientable surface, where the number of crossings in the curve is not allowed to increase at any time durin
Autor:
Suyoung Choi, Mathieu Vallée
Publikováno v:
Pacific Journal of Mathematics
Pacific Journal of Mathematics, 2022, 320 (1), pp.13-43. ⟨10.2140/pjm.2022.320.13⟩
Pacific Journal of Mathematics, 2022, 320 (1), pp.13-43. ⟨10.2140/pjm.2022.320.13⟩
The puzzle method was introduced by Choi and Park as an effective method for finding non-singular characteristic maps over wedged simplicial complexes $K(J)$ obtained from a given simplicial complex $K$. We study further the mod 2 case of the puzzle
Publikováno v:
Journal of topology
Journal of topology, Oxford University Press, 2018, 11 (283-308), ⟨10.1112/topo.12052⟩
Journal of topology, Oxford University Press, 2018, 11 (283-308), ⟨10.1112/topo.12052⟩
We show that a hyperbolic $3$-manifold can be the cyclic branched cover of at most fifteen knots in $\mathbf{S}^3$. This is a consequence of a general result about finite groups of orientation preserving diffeomorphisms acting on $3$-manifolds. A sim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d17eac2b66b891ac1250d8ceea1d2511
https://hal.science/hal-01160794
https://hal.science/hal-01160794
Autor:
Huszár, Kristóf, Spreer, Jonathan
Publikováno v:
Leibniz International Proceedings in Informatics (LIPIcs)
39th International Symposium on Computational Geometry (SoCG 2023)
39th International Symposium on Computational Geometry (SoCG 2023), Jun 2023, Dallas, United States. pp.42:1--42:18, ⟨10.4230/LIPIcs.SoCG.2023.42⟩
Kristóf Huszár
39th International Symposium on Computational Geometry (SoCG 2023)
39th International Symposium on Computational Geometry (SoCG 2023), Jun 2023, Dallas, United States. pp.42:1--42:18, ⟨10.4230/LIPIcs.SoCG.2023.42⟩
Kristóf Huszár
Motivated by the algorithmic study of 3-dimensional manifolds, we explore the structural relationship between the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of Bachman, Derby-Talbot and Sedgwick, we show that a "
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ede02e45b3f15e058c198cd457ee474
https://hal.science/hal-04055617
https://hal.science/hal-04055617
Using skein theory very much in the spirit of the Reshetikhin--Turaev constructions, we define a $(3+1)$-TQFT associated with possibly non-semisimple finite unimodular ribbon tensor categories. State spaces are given by admissible skein modules, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4d403aeeb8f9a59b2a44e2604e6aa8c
http://arxiv.org/abs/2306.03225
http://arxiv.org/abs/2306.03225
Autor:
Trin, Marie
We prove a general counting result for arcs of the same type in compact surfaces. Wealso count infinite arcs in cusped surfaces and arcs in orbifolds. These theorems are derived from aresult that guarantees the convergence of certain measures on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0e0098192e26ce897e6c44f58205860
https://hal.science/hal-04125652
https://hal.science/hal-04125652
Publikováno v:
2017-57. 53 pages, 3 figures. 2017
Annales Scientifiques de l'École Normale Supérieure
Annales Scientifiques de l'École Normale Supérieure, 2022, 55 (5), pp.1379-1431. ⟨10.24033/asens.2519⟩
Annales Scientifiques de l'École Normale Supérieure
Annales Scientifiques de l'École Normale Supérieure, 2022, 55 (5), pp.1379-1431. ⟨10.24033/asens.2519⟩
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novik