Zobrazeno 1 - 10
of 590
pro vyhledávání: '"[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC]"'
Publikováno v:
Journal of Algebra
Journal of Algebra, 2022, 612, pp.691-721. ⟨10.1016/j.jalgebra.2022.08.026⟩
Journal of Algebra, 2022, 612, pp.691-721. ⟨10.1016/j.jalgebra.2022.08.026⟩
International audience; We address the description of the tropicalization of families of rational varieties under parametrizations with prescribed support, via curve valuations. We recover and extend results by Sturmfels, Tevelev and Yu for generic c
Autor:
Roques, Julien, Singer, Michael F.
Publikováno v:
Annales Henri Lebesgue. 5:141-177
We study the form of possible algebraic relations between functions satisfying linear differential equations. In particular , if f and g satisfy linear differential equations and are algebraically dependent, we give conditions on the differential Gal
Autor:
Falkensteiner, Sebastian, Garay-Lopez, Cristhian Emmanuel, Haiech, Mercedes, Noordman, Marc Paul, Boulier, François, Toghani, Zeinab
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, 2023, 115C, pp.53-73. ⟨10.1016/j.jsc.2022.08.005⟩
Journal of Symbolic Computation, Elsevier, In press
Journal of Symbolic Computation, 2023, 115C, pp.53-73. ⟨10.1016/j.jsc.2022.08.005⟩
Journal of Symbolic Computation, Elsevier, In press
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::275d8e91124287d6dca664d47ff01d16
https://hal.science/hal-03122437
https://hal.science/hal-03122437
Publikováno v:
Annales de la Faculté des Sciences de Toulouse. Mathématiques.
Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2021, 30 (1), pp.1-31. ⟨10.5802/afst.1664⟩
Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2021, 30 (1), pp.1-31. ⟨10.5802/afst.1664⟩
The derived bracket of a Maurer-Cartan element in a differential graded Lie algebra (DGLA) is well-known to define a differential graded Leibniz algebra. It is also well-known that a Lie infinity morphism between DGLAs maps a Maurer-Cartan element to
Autor:
Zhangchi Chen
Publikováno v:
Linear Algebra and its Applications. 612:162-176
In Communication theory and Coding, it is expected that certain circulant matrices having $k$ ones and $k+1$ zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when $2k+1$ is either a power of a prime, or a pro
Autor:
Hardouin, Charlotte
Publikováno v:
Commutative Algebra [math.AC]. Université Paul Sabatier (Toulouse 3), 2022
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::cd1e85a88990e4db2eb3d1ade0a24d88
https://theses.hal.science/tel-03925512/document
https://theses.hal.science/tel-03925512/document
Publikováno v:
ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
ISSAC 2023-48th International Symposium on Symbolic and Algebraic Computation
ISSAC 2023-48th International Symposium on Symbolic and Algebraic Computation, Jul 2023, Tromsø, Norway
ISSAC 2023-48th International Symposium on Symbolic and Algebraic Computation
ISSAC 2023-48th International Symposium on Symbolic and Algebraic Computation, Jul 2023, Tromsø, Norway
We describe a recursive algorithm that decomposes an algebraic set into locally closed equidimensional sets, i.e. sets which each have irreducible components of the same dimension. At the core of this algorithm, we combine ideas from the theory of tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b63ec2a6bd2c5a64c2cf1e3ebbb4067e
Publikováno v:
Mathematics of Computation
Mathematics of Computation, 2023, 92, pp.1837-1866. ⟨10.1090/mcom/3804⟩
Mathematics of Computation, 2023, 92, pp.1837-1866. ⟨10.1090/mcom/3804⟩
A tri-linear rational map in dimension three is a rational map $\phi: (\mathbb{P}_\mathbb{C}^1)^3 \dashrightarrow \mathbb{P}_\mathbb{C}^3$ defined by four tri-linear polynomials without a common factor. If $\phi$ admits an inverse rational map $\phi^
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::088775951a78a4a3a451a59ab2d07227
https://inria.hal.science/hal-03839067
https://inria.hal.science/hal-03839067
Autor:
Schaub, Daniel, Spivakovsky, Mark
The Casas-Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives $H_i (f )$ is a power of a linear polynomial. One approach to proving the conjecture is to f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::453ab92c7cae6c365ddd4336b6081861
Publikováno v:
IEEE Access
IEEE Access, 2023, 30, pp.1-1. ⟨10.1109/ACCESS.2023.3261131⟩
IEEE Access, 2023, 30, pp.1-1. ⟨10.1109/ACCESS.2023.3261131⟩
International audience; In this paper, we present a basic theory of the duality of linear codes over three of the non-unital rings of order four; namely I, E , and H as denoted in (Fine, 1993). A new notion of duality is introduced in the case of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b4252eae8f244d7e0623ef4ed131c2e
https://hal.science/hal-04089525/document
https://hal.science/hal-04089525/document