Zobrazeno 1 - 10
of 6 086
pro vyhledávání: '"(fractional) Sobolev spaces"'
Autor:
Lehner, Pascal
In this paper, we analyze the well-posedness of a first order in time nonlinear wave equation with nonhomogeneous Dirichlet or Neumann type boundary conditions, also known as known as Hodge, Lions or Navier-slip boundary conditions, in fractional Sob
Externí odkaz:
http://arxiv.org/abs/2409.17254
Autor:
Amaonyeiro, Anslem, Egwe, Murphy E
This paper considers a new version of fractional Sobolev spaces $\widetilde{\mathcal{W}}_{\mathcal{U}}^{\beta,p}(\mathbb{C}^{n})$ defined using the concept of tempered ultradistributions with respect to the spaces of ultradifferentiable functions $\m
Externí odkaz:
http://arxiv.org/abs/2410.09074
The main goal of this paper is to introduce a new fractional anisotropic Sobolev space with variable exponent where the basic qualitative properties (completeness, separability, reflexivity, ...) are established, including the continuous and compact
Externí odkaz:
http://arxiv.org/abs/2410.02969
We use a model operator approach and the spectral theorem for self-adjoint operators in a Hilbert space to derive the basic results of abstract left-definite theory in a straightforward manner. The theory is amply illustrated with a variety of concre
Externí odkaz:
http://arxiv.org/abs/2408.01514
In this paper, our primary objective is to develop the peridynamic fractional Sobolev space and establish novel BBM-type results associated with it. We also address the peridynamic fractional anisotropic $p-$Laplacian. A secondary objective is to exp
Externí odkaz:
http://arxiv.org/abs/2408.09170
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
This article studies the canonical Hilbert energy $H^{s/2}(M)$ on a Riemannian manifold for $s\in(0,2)$, with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold
Externí odkaz:
http://arxiv.org/abs/2402.04076