Zobrazeno 1 - 10
of 77
pro vyhledávání: '"$s$-shaped bifurcation curve"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 99, Pp 1-25 (2019)
We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-10$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolutio
Externí odkaz:
https://doaj.org/article/16c137d32fd64b86b6c5a0098b4a861e
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 85, Pp 1-30 (2018)
We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f(u(x))=0,\quad 00$ is a bifurcation pa
Externí odkaz:
https://doaj.org/article/9d80bb6c581946598e8209cf80f8661e
Autor:
Korman, Philip, Li, Yi
Publikováno v:
Proceedings of the American Mathematical Society, 1999 Apr 01. 127(4), 1011-1020.
Externí odkaz:
https://www.jstor.org/stable/119222
Autor:
Wang, Shin-Hwa
Publikováno v:
Proceedings: Mathematical, Physical and Engineering Sciences, 1998 Apr 01. 454(1972), 1031-1048.
Externí odkaz:
https://www.jstor.org/stable/53249
Autor:
Yu-Hao Liang, Shin-Hwa Wang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 61,, Pp 1-12 (2017)
In this article, we study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, $$\displaylines{ u''(x)+\lambda\exp\big(\frac{au}{a+u}\big)
Externí odkaz:
https://doaj.org/article/4356834c8e1b4ef6937eb78a06e4faa0
Autor:
Shao-Yuan Huang, Shin-Hwa Wang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 94, Pp 1-21 (2016)
We study a variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \exp \left( \frac{au}{a+u}\right) =0, & -10$
Externí odkaz:
https://doaj.org/article/bc721266a54843efaf5fec66e0d9e06b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 99, Pp 1-25 (2019)
We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-10$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolutio
Publikováno v:
Taiwanese J. Math. 23, no. 2 (2019), 307-331
We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Dirichlet-Neumann boundary value problem \[ \begin{cases} u''(x) + \lambda f(u) = 0, \quad 0 \lt x \lt 1, \\ u(0) = 0, \quad u'(1) = -c \lt
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b19b46a57de99f83f60ca925b323c167
https://projecteuclid.org/euclid.twjm/1527127365
https://projecteuclid.org/euclid.twjm/1527127365