Zobrazeno 1 - 10
of 10
pro vyhledávání: '"$2$-plectic structure"'
Autor:
Mohammad Shafiee
Publikováno v:
Journal of Mahani Mathematical Research, Vol 13, Iss 1, Pp 443-455 (2023)
Among the $2$-plectic structures on vector spaces, the canonical ones and the $2$-plectic structures induced by the Killing form on semisimple Lie algebras are more interesting. In this note, we show that the group of linear preservers of the canonic
Externí odkaz:
https://doaj.org/article/6b3067a64e464a21a84fdccedaec4c27
Autor:
Shafiee, Mohammad
Publikováno v:
Journal of Geometry; Dec2014, Vol. 105 Issue 3, p615-623, 9p
Autor:
MITI, ANTONIO MICHELE, SPERA, MAURO
Publikováno v:
Journal of the Australian Mathematical Society; Jun2022, Vol. 112 Issue 3, p335-354, 20p
Autor:
Bunk, Severin1 sb11@hw.ac.uk, Szabo, Richard2 r.j.szabo@hw.ac.uk
Publikováno v:
Letters in Mathematical Physics. Oct2017, Vol. 107 Issue 10, p1877-1918. 42p.
Autor:
Mohammad Shafiee
Publikováno v:
Journal of Geometric Mechanics. 9:83-90
In this paper we show that if the Lie algebra $\mathfrak{g}$ admits a Lie bialgebra structure and $\mathcal{D}$ is a Lie group with Lie algebra $\mathfrak{d}$, the double of $\mathfrak{g}$, then $\mathcal{D}$ or its quotient by a suitable Lie subgrou
Autor:
FIORENZA, DOMENICO1 fiorenza@mat.uniroma1.it, ROGERS, CHRISTOPHER L.2 crogers@uni-math.gwdg.de, SCHREIBER, URS3 urs.schreiber@gmail.com
Publikováno v:
Homology, Homotopy & Applications. 2014, Vol. 16 Issue 2, p107-142. 36p.
Publikováno v:
Reviews in Mathematical Physics; Feb2018, Vol. 30 Issue 1, p-1, 101p
Autor:
Ritter, Patricia, Sämann, Christian
Publikováno v:
Reviews in Mathematical Physics; Oct2016, Vol. 28 Issue 9, p1, 46p
Autor:
Ritter, Patricia, Sämann, Christian
Publikováno v:
Journal of High Energy Physics; Apr2014, Vol. 2014 Issue 4, p1-45, 45p
Autor:
Mohammad Shafiee
Publikováno v:
Journal of Geometric Mechanics. 7:389-394
In this note we study the existence of $2$-plectic structures on homogenous spaces. In particular we show that $S^{5}=\frac{SU(3)}{SU(2)}$, $\frac{SU(3)}{S^{1}}$, $\frac{SU(3)}{T^{2}}$ and $\frac{SO(4)}{S^{1}}$ admit a $2$-plectic structure. Furtherm