Zobrazeno 1 - 10
of 303
pro vyhledávání: '"$\phi$-laplacian"'
Autor:
Uriel Kaufmann, Leandro Milne
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 54, Pp 1-14 (2024)
Let $\Omega=(a,b)\subset\mathbb{R}$, $0\leq m,n\in L^{1}(\Omega)$, $\lambda,\mu>0$ be real parameters, and $\phi: \mathbb{R}\rightarrow\mathbb{R}$ be an odd increasing homeomorphism. In this paper we consider the existence of positive solutions for p
Externí odkaz:
https://doaj.org/article/d035fca149064046bc078e290d899d7f
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 35, Pp 1-34 (2024)
We study the existence of solutions for a class of boundary value problems on the half line, associated to a third order ordinary differential equation of the type $$\left(\Phi(k(t, u'(t))u''(t))\right)'(t)=f \left(t, u(t), u'(t), u''(t) \right), \qu
Externí odkaz:
https://doaj.org/article/17d704b8cfc442c48dd3b004e5a734eb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electronic Journal of Differential Equations, Vol 2022, Iss 01,, Pp 1-13 (2022)
Externí odkaz:
https://doaj.org/article/e374c1ba1edf485282583a91521d2787
Autor:
Dang Dinh Hai, Xiao Wang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 65, Pp 1-13 (2021)
We prove the existence and multiplicity of positive solutions to the singular $\phi$-Laplacian BVP \begin{align*} \begin{cases} -(r(t)\phi(u′))′=\lambda g(t)(f(u)-(a/(u^{\alpha}))),& t\in(0,1),\\ u(0)=0, u′(1)+H(u(1))=0 \end{cases} \end{align*}
Externí odkaz:
https://doaj.org/article/9067d9b60f1d46d189709917da877521
Autor:
Lukáš Rachůnek, Irena Rachůnková
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 72, Pp 1-19 (2018)
A singular nonlinear initial value problem (IVP) with a $\phi$-Laplacian of the form $$ (p(t)\phi(u'(t)))'+ p(t)f(\phi(u(t)))=0, \quad u(0)=u_0 \in [L_0,0),\quad u'(0)=0 $$ is investigated on the half-line $[0,\infty)$. Here, function $\phi$ is smoot
Externí odkaz:
https://doaj.org/article/2445583de4f241feae511c12d681ed8a
Autor:
Waldo Arriagada, Jorge Huentutripay
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 6, Pp 765-777 (2018)
In this short paper we prove a parametric version of the Harnack inequality for \(\phi\)-Laplacian equations. In this sense, the estimates are optimal and represent an improvement of previous bounds for this kind of operators.
Externí odkaz:
https://doaj.org/article/d8d5bfb87b5143c488eb063082aae13f
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 80, Pp 1-26 (2017)
The paper deals with a singular nonlinear initial value problem with a $\phi$-Laplacian $$ (p(t)\phi(u'(t)))'+ p(t)f(\phi(u(t)))=0,\ t>0, \quad u(0)=u_0 \in [L_0,L],\ u'(0)=0. $$ Here, $f$ is a continuous function with three roots $\phi(L_0)
Externí odkaz:
https://doaj.org/article/aed802be833e41c88cde97ab785bf893
Autor:
Waldo Arriagada, Jorge Huentutripay
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 49,, Pp 1-17 (2017)
In this article we define and characterize the homogeneous Orlicz space $\mathscr{D}^{1,\Phi}_{\rm o}(\mathbb{R}^{N})$ where $\Phi:\mathbb{R}\to [0,+\infty)$ is the N-function generated by an odd, increasing and not-necessarily differentiable home
Externí odkaz:
https://doaj.org/article/7d7d32b6a8f04e1cad9f858d5b876a9a
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 121, Pp 1-28 (2016)
We study analytical properties of a singular nonlinear ordinary differential equation with a $\phi$-Laplacian. In particular we investigate solutions of the initial value problem $$ (p(t)\phi(u'(t)))'+ p(t)f(\phi(u(t)))=0, \quad u(0)=u_0 \in [L_0,L],
Externí odkaz:
https://doaj.org/article/e798d487f850446897b8f1f547e11e94