Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Büchler, Dieter"'
Autor:
Zhao, Yi, Scannell, Aidan, Hou, Yuxin, Cui, Tianyu, Chen, Le, Büchler, Dieter, Solin, Arno, Kannala, Juho, Pajarinen, Joni
Sample-efficient robot learning is a longstanding goal in robotics. Inspired by the success of scaling in vision and language, the robotics community is now investigating large-scale offline datasets for robot learning. However, existing methods ofte
Externí odkaz:
http://arxiv.org/abs/2502.19544
Autor:
Zhao, Yi, Chen, Le, Schneider, Jan, Gao, Quankai, Kannala, Juho, Schölkopf, Bernhard, Pajarinen, Joni, Büchler, Dieter
It has been a long-standing research goal to endow robot hands with human-level dexterity. Bi-manual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but co
Externí odkaz:
http://arxiv.org/abs/2408.11048
Autor:
Schumacher, Pierre, Krause, Lorenz, Schneider, Jan, Büchler, Dieter, Martius, Georg, Haeufle, Daniel
Recent studies have demonstrated the immense potential of exploiting muscle actuator morphology for natural and robust movement -- in simulation. A validation on real robotic hardware is yet missing. In this study, we emulate muscle actuator properti
Externí odkaz:
http://arxiv.org/abs/2402.05371
Autor:
Schneider, Jan, Schumacher, Pierre, Guist, Simon, Chen, Le, Häufle, Daniel, Schölkopf, Bernhard, Büchler, Dieter
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be
Externí odkaz:
http://arxiv.org/abs/2401.06604
Autor:
Collaboration, Open X-Embodiment, O'Neill, Abby, Rehman, Abdul, Gupta, Abhinav, Maddukuri, Abhiram, Gupta, Abhishek, Padalkar, Abhishek, Lee, Abraham, Pooley, Acorn, Gupta, Agrim, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Gupta, Anchit, Wang, Andrew, Kolobov, Andrey, Singh, Anikait, Garg, Animesh, Kembhavi, Aniruddha, Xie, Annie, Brohan, Anthony, Raffin, Antonin, Sharma, Archit, Yavary, Arefeh, Jain, Arhan, Balakrishna, Ashwin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schölkopf, Bernhard, Wulfe, Blake, Ichter, Brian, Lu, Cewu, Xu, Charles, Le, Charlotte, Finn, Chelsea, Wang, Chen, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Agia, Christopher, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Xu, Danfei, Morton, Daniel, Driess, Danny, Chen, Daphne, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Jayaraman, Dinesh, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Foster, Ethan, Liu, Fangchen, Ceola, Federico, Xia, Fei, Zhao, Feiyu, Frujeri, Felipe Vieira, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Feng, Gilbert, Schiavi, Giulio, Berseth, Glen, Kahn, Gregory, Yang, Guangwen, Wang, Guanzhi, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Bao, Henghui, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Bharadhwaj, Homanga, Walke, Homer, Fang, Hongjie, Ha, Huy, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Drake, Jaimyn, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Vakil, Jay, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jeffrey, Gao, Jensen, Hu, Jiaheng, Wu, Jiajun, Wu, Jialin, Sun, Jiankai, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Wu, Jimmy, Lu, Jingpei, Yang, Jingyun, Malik, Jitendra, Silvério, João, Hejna, Joey, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Salvador, Jordi, Lim, Joseph J., Han, Junhyek, Wang, Kaiyuan, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Black, Kevin, Lin, Kevin, Zhang, Kevin, Ehsani, Kiana, Lekkala, Kiran, Ellis, Kirsty, Rana, Krishan, Srinivasan, Krishnan, Fang, Kuan, Singh, Kunal Pratap, Zeng, Kuo-Hao, Hatch, Kyle, Hsu, Kyle, Itti, Laurent, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Fan, Linxi "Jim", Ott, Lionel, Lee, Lisa, Weihs, Luca, Chen, Magnum, Lepert, Marion, Memmel, Marius, Tomizuka, Masayoshi, Itkina, Masha, Castro, Mateo Guaman, Spero, Max, Du, Maximilian, Ahn, Michael, Yip, Michael C., Zhang, Mingtong, Ding, Mingyu, Heo, Minho, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Liu, Ning, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Bastani, Osbert, Sanketi, Pannag R, Miller, Patrick "Tree", Yin, Patrick, Wohlhart, Paul, Xu, Peng, Fagan, Peter David, Mitrano, Peter, Sermanet, Pierre, Abbeel, Pieter, Sundaresan, Priya, Chen, Qiuyu, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Mart'in-Mart'in, Roberto, Baijal, Rohan, Scalise, Rosario, Hendrix, Rose, Lin, Roy, Qian, Runjia, Zhang, Ruohan, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Lin, Shan, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Tulsiani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Karamcheti, Siddharth, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Ramamoorthy, Subramanian, Dasari, Sudeep, Belkhale, Suneel, Park, Sungjae, Nair, Suraj, Mirchandani, Suvir, Osa, Takayuki, Gupta, Tanmay, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Kollar, Thomas, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Chung, Trinity, Jain, Vidhi, Kumar, Vikash, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Chen, Xiangyu, Wang, Xiaolong, Zhu, Xinghao, Geng, Xinyang, Liu, Xiyuan, Liangwei, Xu, Li, Xuanlin, Pang, Yansong, Lu, Yao, Ma, Yecheng Jason, Kim, Yejin, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Wu, Yilin, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Dou, Yongqiang, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Cao, Yue, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Zhang, Yunchu, Jiang, Yunfan, Li, Yunshuang, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Ma, Zehan, Xu, Zhuo, Cui, Zichen Jeff, Zhang, Zichen, Fu, Zipeng, Lin, Zipeng
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretra
Externí odkaz:
http://arxiv.org/abs/2310.08864
Reinforcement learning~(RL) is a versatile framework for learning to solve complex real-world tasks. However, influences on the learning performance of RL algorithms are often poorly understood in practice. We discuss different analysis techniques an
Externí odkaz:
http://arxiv.org/abs/2309.06921
We present an implementation of an online optimization algorithm for hitting a predefined target when returning ping-pong balls with a table tennis robot. The online algorithm optimizes over so-called interception policies, which define the manner in
Externí odkaz:
http://arxiv.org/abs/2308.14562
Autor:
Guist, Simon, Schneider, Jan, Ma, Hao, Chen, Le, Berenz, Vincent, Martus, Julian, Ott, Heiko, Grüninger, Felix, Muehlebach, Michael, Fiene, Jonathan, Schölkopf, Bernhard, Büchler, Dieter
Operating robots precisely and at high speeds has been a long-standing goal of robotics research. Balancing these competing demands is key to enabling the seamless collaboration of robots and humans and increasing task performance. However, tradition
Externí odkaz:
http://arxiv.org/abs/2307.02654
Robotic applications require the integration of various modalities, encompassing perception, control of real robots and possibly the control of simulated environments. While the state-of-the-art robotic software solutions such as ROS 2 provide most o
Externí odkaz:
http://arxiv.org/abs/2306.09764
Autor:
Achterhold, Jan, Tobuschat, Philip, Ma, Hao, Buechler, Dieter, Muehlebach, Michael, Stueckler, Joerg
In this paper, we present a method for table tennis ball trajectory filtering and prediction. Our gray-box approach builds on a physical model. At the same time, we use data to learn parameters of the dynamics model, of an extended Kalman filter, and
Externí odkaz:
http://arxiv.org/abs/2305.15189